
Sturz und Schwindel in der Geriatrie

Assessments, Prophylaxe und Übungsprogramme

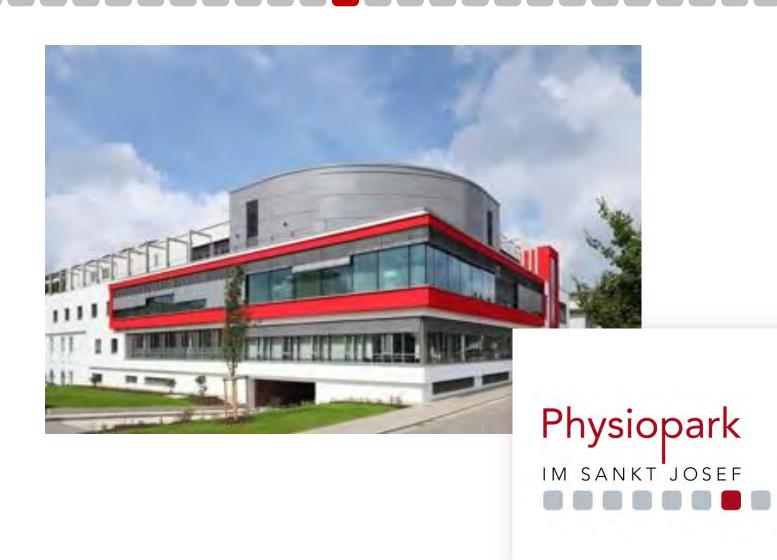
Veronika Vest Physiotherapeutin

Andreas Lieschke, Physiotherapeut

Roy Obermüller, Dipl. Sportwissenschaftler

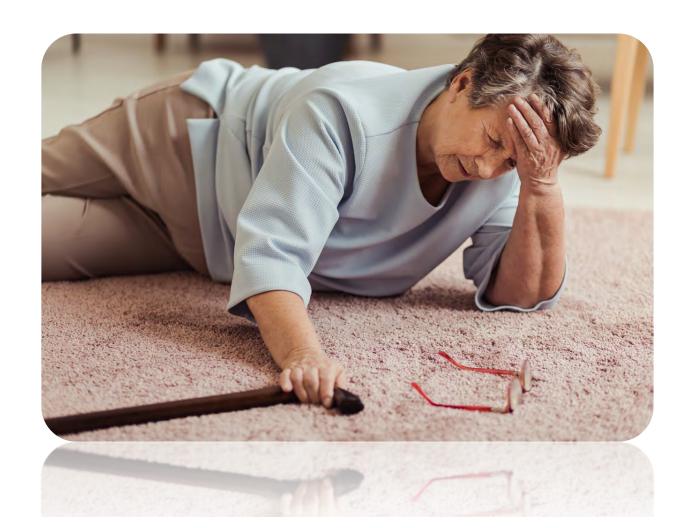
Physiopark REGENSBURG

16. Februar 2020



BEI DEN ARCADEN

16. Februar 2020


Sturzprophylaxe

- Sturz-Risiko
- Assessments
- Übungen im Alter

Schwindel

- Assessments und Untersuchung
- Schwindel-Übungs-Programm

 Ab 65 Jahren: 30% stürzen 1x pro Jahr Ab 70 Jahren: 32-42% (NICE* 2013)

 Weltweit gesehen stürzen in Langzeitpflegeeinrichtungen jährlich ca. 30-50%, wobei 40% davon wiederkehrende Stürze sind (Wildbacher 2014)

 Allgemein liegt die Sturzhäufigkeit in Krankenhäusern weltweit bei ca. 1,2%, das entspricht etwa 12 Stürzen bei 1000 Patienten am Tag (Milisen et al. 2007).

^{*}National Institute for Health and Care Excellence

 Das Thema Sturz ist von hoher Relevanz, denn die Folgen eines Sturzes sind ein pflegerisches, medizinisches und soziales Problem.

- Hüftfrakturen, Frakturen der oberen oder unteren Extremitäten sowie Schädel-Hirn-Traumata sind Hauptursachen für Krankenhausaufenthalte nach einem Sturz (Wildbacher 2014).
- Dies kann schwerwiegende Körperliche aber auch psychische Folgen für den betreffenden Patient haben.
- Kosten für eine gestürzte Person auf 1513 € bis 19.211 € pro Jahr. (NICE*)

^{*}National Institute for Health and Care Excellence

Ursachen von Stürzen:

- Falsche Gewichtsverlagerung (Balance) (41%)
- Stocken und Stolpern mit 21%,
- Stoß und Schlag, Stützverlust und Kollaps mit 11%
- nur 3% stürzen aufgrund von Rutschen (Boden)
- Stürze traten am häufigsten beim Vorwärtsgehen, Stillstehen und hinsetzen auf.
- Dazu kommen intrinsische Faktoren: Erkrankungen (Neurologisch, Orthopädisch, Vestibular-Organ...) Medikamente

• • •

Wie einschätzen...?

(...) "Auf Grund der Ergebnisse ist es naheliegend, dass ein einziges Assessment nicht (...)in jeder Population aussagekräftige Ergebnisse zum Sturzrisiko liefern kann."

Allgemein ist die Anwendung von Sturzrisiko-Assessments in **Kombination** mit weiteren Assessments beziehungsweise Testungen zu empfehlen.

Wie einschätzen...?

Fall risk assessment

- Skalen, Bewertungsbogen, Scores....
- Functional Reach Test
- Balance Error Scoring System (BESS)
- Tinetti Test
- Timed "up & go"
- Chair rising-Test

Instrumente zur Sturzrisikoeinschätzung Skalen

- Morse Skala (Morse 1989, McCollam 1995, Eagle 1999, Schwendimann, 2006, Kim 2007, Aranda-Gallardo 2013)
- STRATIFY (Oliver 1997, Coker 2003, Papaioannou 2004, Milisen, 2004, Vassallo 2005, Kim 2007, Milisen 2007, Billington 2012, Aranda-Gallardo 2013)
- Hendrich Skala (Hendrich 1995, 2003, Kim 2007, Lovallo 2010, Aranda-Gallardo 2013)
- Conley Skala (Conley 1999, Chiara 2002, Lovallo 2010)
- Downton Skala (Nyberg, 1996, Vassallo 2005)
- Schmid Skala (Schmid 1990)
- Klinische Beurteilung (Milisen, 2012; Myers 2003, Eagle 1999, Moore 1996)

Allgemein: Einer alleine reicht nicht!

geringe PPV (richtig-positiv), sehr hohe NPV (richtig-negativ)

STRATIFY (St. Thomas Risk Assessment Tool in Falling Elderly patients 5 Fragen, eher für Akutkrankenhaus als Geriatrie / Ü75 Sehr geringe PPV (unter 2-29%) Sehr hohe NPV (über 91-99%)

MFS (Morse Fall Scale)
6 Fragen, ähnlich gut wie STRATIFY
Cutoff stark abhängig von Population

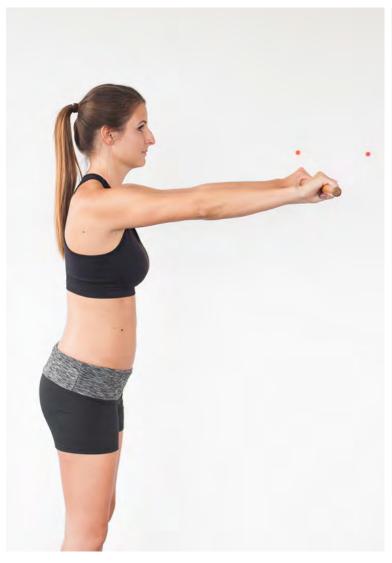
HFRM (Hendrich Fall Risk Model)
Beurteilung von 7 Risikofaktoren, u.a. Medikation (Antiepileptika, Benzodiazipine)
Vorhersagewerte leicht unter STRATIFY

Conley Scale

2 Kriterien, eher problematisch

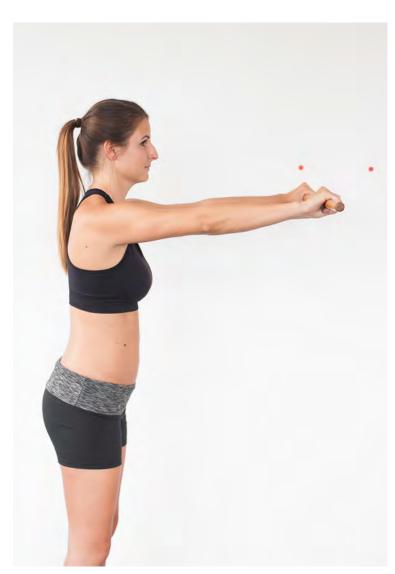
Downton Fall Risk Tool

6 Kriterien, u.a. Medikation (Sedativa, Hypertensiva, ...) Etwas geringere Vorhersagewerte als STRATIFY




Assessments

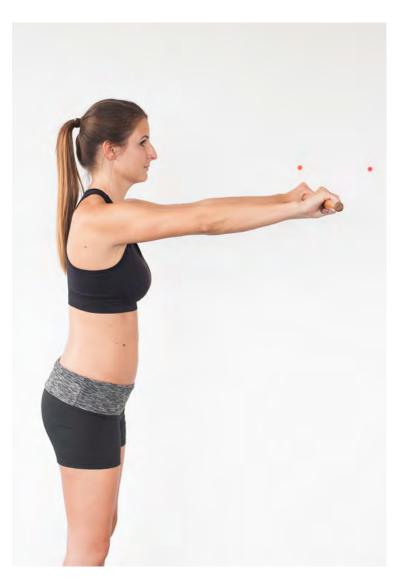
(modifiziert) Functional-Reach-Test


- 1. Arme auf Schulterniveau
- 2. So weit wie möglich nach vorne reichen
 - OHNE die Fersen abzuheben
 - OHNE die Hüften nach hinten zu bewegen

Mod. Functional-Reach-Test

Die Werte nehmen im Alter deutlich ab:

20-40 Jahre: 42,49cm


Im Alter spielt es ein Rolle, ob Menschen in einer Gemeinschaft oder alleine Leben:

In Gemeinschaft: 26,60cm

Nicht in einer Gemeinschaft: 15,40cm

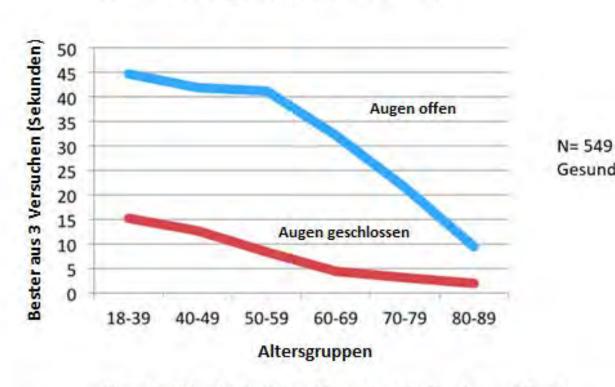
Mod. Functional-Reach-Test

Bei älteren Menschen:

> 25 cm: kein erhöhtes Sturzrisiko

15-25 cm: Sturzrisiko verdoppelt

5-15 cm: Sturzrisiko 4-fach


0 cm: Sturzrisiko 8-fach

Weniger geeignet zur Verlaufsmessung

Ein-Bein-Stand...

Entwicklung im Altersverlauf

Normative Values for the Unipedal Stance Test with Eyes Open and Closed

Barbara Springer-Raul Marin-Tamara Cyhan-Holly Roberts-Norman Gill - Journal of Geriatric Physical

Therapy - 2007

Ein-Bein-Stand...

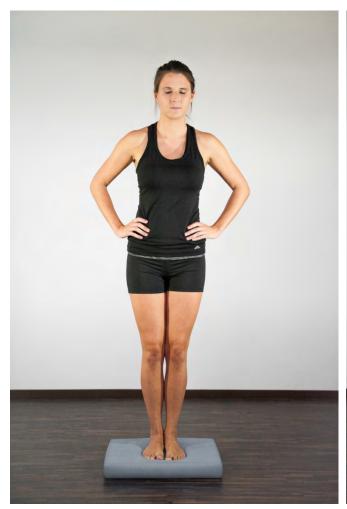
Einbeinstand mit offenen Augen in Sekunden

Einbeinstand mit geschlossenen Augen in Sekunden

Alter	weiblich	männlich	weiblich	männlich
18-39	45,1	44,4	13,1	16,9
40-49	42,1	41,6	13,5	12
50-59	40,9	41,5	7,9	8,6
60-69	30,4	33,8	3,6	5,1
70-79	16,7	25,9	3,7	2,6
80-99	10,6	8,7	2,1	1,8

- Das BESS testet in drei verschiedenen
 Ausgangssituationen: Bipedal, Unipedal, "Tandem-Schritt"
- Zwei verschiedene Oberflächen: feste Oberfläche und mittelfeste Schaummatte (Airex Balance PadTM)
- 6 Tests, jeweils 20 Sekunden
- Händen auf Hüften und geschlossene Augen

Balance Error Scoring System Physiopark (BESS)



- 1. Bipedal, 2. Unipedal: nicht-dominanter Fuß am Boden
- 3. Tandem: nicht-dominanter Fuß hinten

- 1. Bipedal, 2. Unipedal: nicht-dominanter Fuß auf Matte,
- 3. Tandem: nicht-dominanter Fuß hinten

Fehlerpunkte während der Prüfung:

- Augen öffnen
- entfernen der Hände von der Hüfte
- Vorwärts stolpern oder fallen
- Abheben Vorfuß o. Ferse von Testoberfläche
- Ausweichen oder Beugung der Hüfte über 30 Grad
- < 5 Sekunden in Testposition mgl. -> 10 Punkte
- Fehlerpunkte: 0 (perfekt)-60 (sehr schlecht)
- Pro Test-Sequenz: max. 10 Punkte (= max. 6x10)
 Mehrere Fehler gleichzeitig: nur 1 Punkt

Gesunde Erwachsene, n = 589

Alter	ALLE	Männer	Frauen
20-29	11.3	10.4	11.9
30-39	11.5	11.5	11.4
40-49	12.5	12.4	12.7
50-54	14.2	13.6	15.1
55-59	16.5	16.4	16.7
60-64	18.0	17.2	19.3
65-69	19.9	20.0	19.9

Frauen mit BMI <u>></u> 30

Alter: 20-29; BESS score: 17.3 Alter: 50-64; BESS score: 21.6

Iverson et al, 2008, 2013

20–29	Mean 11.3	Median 11.0	SD 4.8	Superior 0–5	Above average 6-7	Broadly normal 8–14	Below average 15–17	Poor 18–23	Very poor 24+
30–39	11.5	11.0	5.5	0–4	5–7	8–15	16–18	19–26	27+
40–49	12.5	11.5	6.2	0–5	6–8	9–16	17–20	21–28	29+
50–54	14.2	12.0	7.5	0–6	7-8	9–18	19–24	25–33	34+
55–59	16.5	15.0	7.6	0–7	8–10	11–20	21–28	29–35	36+
60–64	18.0	16.5	7.8	0–8	9–12	13–22	23–28	29-40	41+
65-69	19.9	18.0	7.1	0–12	13–15	16–24	25–32	33–38	39+
Men									
20–29	10.4	10.0	4.4	0–4	5-6	7–14	15	16–21	22+
30–39	11.5	11.0	5.5	0–4	5-6	7–15	16–18	19–26	27+
40–49	12.4	12.0	5.7	0–5	6-7	8–16	17–20	21–27	28+
50-54	13.6	12.0	6.9	0–6	7	8–17	18–23	24–28	29+
55–59	16.4	15.0	7.2	0–7	8–10	11–20	21–28	29-34	35+
60–64	17.2	16.0	7.1	0–8	9–11	12–21	22–27	28–35	36+
65–69	20.0	18.0	7.3	0–12	13-14	15–23	24–33	34–39	40+
Women									
20–29	11.9	11.0	5.1	0–5	6-7	8–14	15–19	20–25	26+
30–39	11.4	10.5	5.6	0–4	5-6	7–15	16–19	20–27	28+
40–49	12.7	11.0	6.9	0–5	6-7	8–15	16-20	21–29	30+
50-54	15.1	13.0	8.2	0–7	8-9	10–20	21–24	25–35	36+
55–59	16.7	15.0	8.2	0–8	9-10	11–21	22–28	29–39	40+
60–64	19.3	17.0	8.8	0–9	10–12	13–22	23–31	32–43	44+
65–69	19.9	18.0	6.6	0–13	14	15–24	25–27	28–38	39+
Women: B/	MI ≥ 30								
20-49	17.3	16.0	6.5	0–8	9–12	13–22	23–27	28–33	34+
50-64	21.6	20.0	8.4	0–11	12–14	15–27	28–32	33–41	42+

TMT – Tinetti Mobility Test
POMA – Performance Oriented Mobility Test
Balance und Gang-Test

- "Babylon des Geriatrie-Assessments"
- Sehr viele Varianten in Testaufbau und Interpretation
- Hohe Sensitivität und Spezifität zur Vorhersage von Stürzen.
- Inter-Tester-Übereinstimmung etwas problematisch!
- Intra-Tester ist zu bevorzugen, mit standardisiertem Testaufbau
- Test- Re-Testverfahren

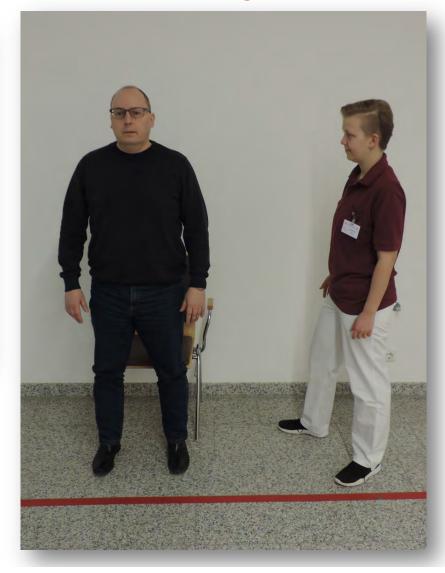
Balance und Gang-Test

Gang (max. 12 P.)

plus

- Balance (max. 16 P.)
- = Gang + Balance (max. 28 P.)
- < 19 Punkte: hohes Risiko für Sturz
- 19-24 Punkte: erhöhte Sturzgefahr

Balance und Gang-Test



Sitzbalance

Balance und Gang-Test

Aufstehen & Standbalance

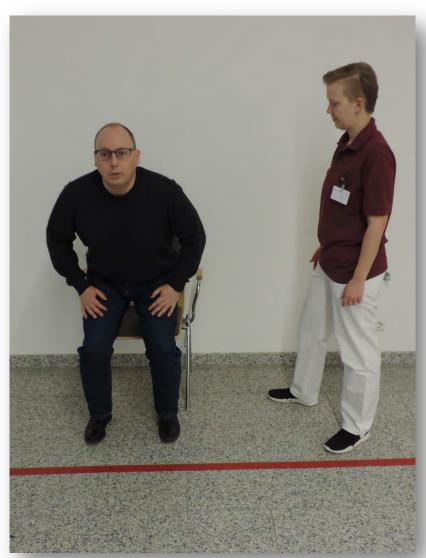
Balance und Gang-Test

3x Anstoßen am Brustbein (Beine geschlossen)

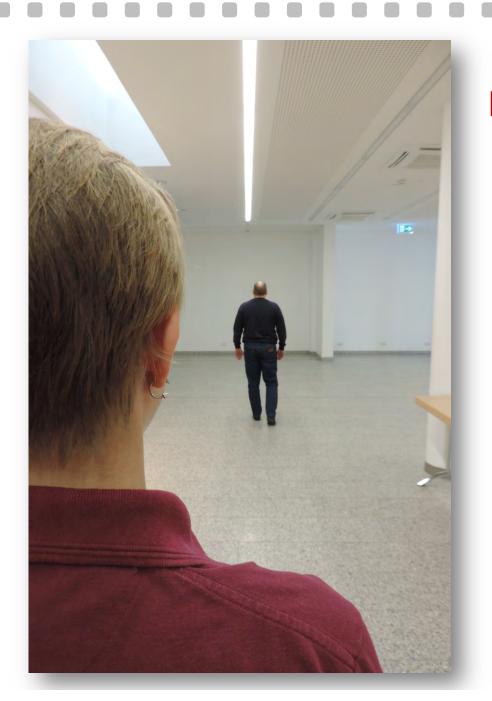
Balance und Gang-Test

Stand mit geschlossenen Augen

Füße max. zusammen


Balance und Gang-Test

Drehen um die eigene Längsachse



Balance und Gang-Test

Hinsetzen

Tinetti-Test Balance und Gang-Test

Gang

1) Balance (max. 16 Punkte)

Task	Beschreibung der Balance	Punkte
1: Sitzbalance	muss anlehnen oder rutscht im Stuhl	0
	stabil, sicher	1
2: Aufstehen	ohne Hilfe von außen nicht möglich	0
	möglich, mit Hilfe der Arme	1
	möglich, ohne Hilfe der Arme	2
3: Anzahl der Versuche	ohne Hilfe von außen nicht möglich	0
beim Aufstehen	möglich, > 1 Versuch	1
	möglich, erster Versuch	2
4: Sofortige Standbalance	instabil (bewegt Füße, Rumpf schwankt)	0
(erste 5 sec)	stabil mit Gehhilfe/Unterstützung	1
	stabil ohne Gehhilfe/Unterstützung	2
5: Standbalance	instabil	0
	stabil, breiter Stand (mediale Fersen >10cm auseinander)	1
	stabil, enger Stand	2

1) Balance (max. 16 Punkte)

unkte
)
)
)
)

2) Gang (max. 12 Punkte)

Patient steht, geht erst eine Bahn in "normaler" Geschwindigkeit, dann zurück in "schneller, aber sicherer" Geschwindigkeit (using usual walking aids)

Task	Beschreibung der Balance	Punkte			
10: Ganginitiierung	Verzögerung oder > 1 Versuche, zu starten	0			
(sofort nach "los")	keine Verzögerung	1			
11: Schritt-Länge + -Höhe	a. rechter Schwungfuß passiert nicht linken Standfuß	0			
	b. rechter Schwungfuß passiert	1			
	linken Standfuß				
	c. rechter Fuß schleift beim Schritt am Boden 0				
	d. rechter Fuß verlässt beim Schritt komplett den Boden	1			

Tinetti-Test

2) Gang (max. 12 Punkte)

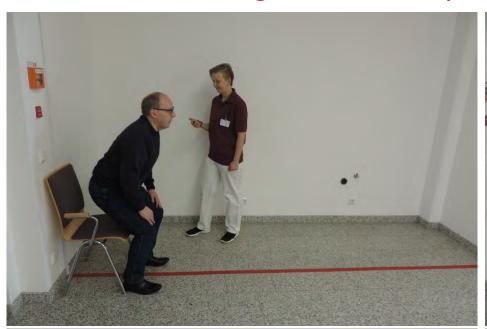
	e. linker Schwungfuß passiert nicht rechten Standfuß	0
	f. linker Schwungfuß passiert rechten Standfuß	1
	g. linker Fuß schleift beim Schritt am Boden h. linker Fuß verlässt beim Schritt komplett den Boden	0
12: Schrittlängen-Symmetrie	Schrittlängen rechts / links ungleich (geschätzt) Schrittlängen rechts / links erscheinen gleich	0
13: Schritt-Kontinuität	Stoppen oder unstetige Schritte Schritte erscheinen stetia	0

Tinetti-Test

2) Gang (max. 12 Punkte)

14: Wegabweichung	deutliche Abweichung	(
(30cm-Bodenfliesen, Beob. über 10 Schritte)	milde/moderate Abweichung oder mit Gehhilfe]
	gerade, ohne Gehhilfe	2
15: Rumpfstabilität	deutliches Schwanken oder Gehhilfe kein Schwanken, aber Flexion Knie/Rücken, oder ausgebreitete Arme (während Geher kein Schwanken, keine Flexion, kein Armeinsatz, keine Gehhilfe	
16: Schritt-Breite	Fersen weit auseinander Fersen berühren sich fast beim Gehen	1

Timed Up & Go Test


Alltagsmobilität (Sturz?)

- ASTE: Angelehnt sitzend auf Stuhl mit Armlehnen
- Aufgabe: ohne Hilfe Aufstehen (ggf. mit Gehhilfe)
- 3m gehen, umkehren und wieder setzten

Podsiadlo 1991, Thrane et al. 2007, Alexandre et al 2012, <u>Ibrahim</u> 2019


Timed Up & Go Test Alltagsmobilität (Sturz?)

Physiopark

Timed Up & Go Test

Alltagsmobilität (Sturz?)

Interpretation:

- unter 10 Sekunden:
 Alltagsmobilität uneingeschränkt
- 10-19 Sekunden: geringe Mobilitätseinschränkung
- 20-29 Sekunden: relevante Mobilitätseinschränkung
- 30 Sekunden und mehr: ausgeprägte Mobilitätseinschränkung

Aussagekraft über Sturzrisiko: unterschiedliche Studienergebnisse Eher für Langzeitpflegebereich empfohlen

Podsiadlo 1991, Thrane et al. 2007, Alexandre et al 2012, <u>Ibrahim</u> 2019

Chair-Rising-Test

Alltagsmobilität / Kraft (Sturz?)

- Chair-Rising-Test
- 5x aus einem Stuhl aufstehen
- Übliche Sitzhöhe
- Ohne die Arme abzustützen (Hände kreuzen)
- Ziel: 11 Sekunden oder weniger

Chair-Rising-Test

Alltagsmobilität / Kraft (Sturz?)

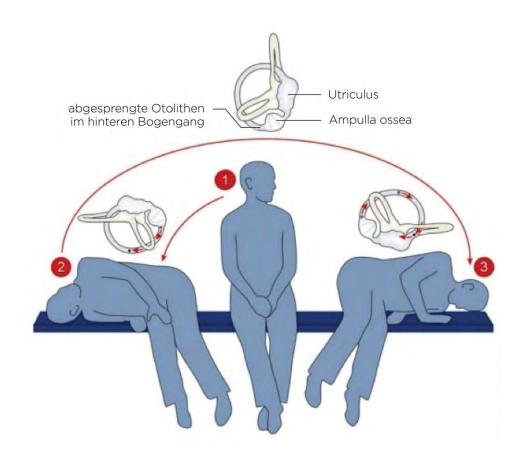
Vertigo

Vertigo

- 30 % der über 65-Jährigen 1x Monat
- ab 76 Jahren 50 % Schwindel

Einteilung nach Arten:

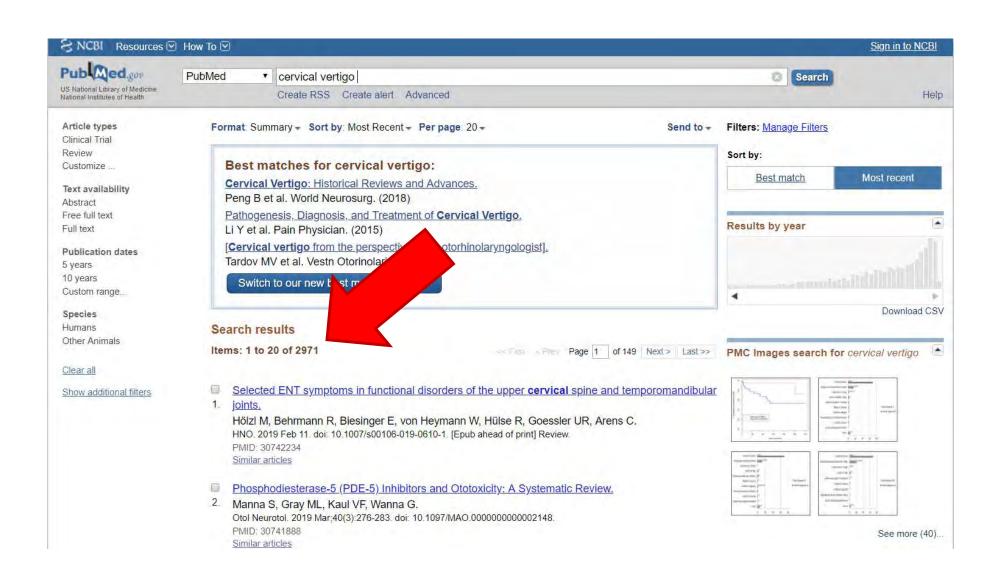
 Drehschwindel Liftschwindel, Schwankschwindel, Benig. Lagerungsschwindel.....


Einteilung nach Ursachen:

- peripher-vestibulärer Schwindel (Labyrinth, N. vestibulocochlearis)
- zentral-vestibulärer Schwindel
- psychogener Schwindel
- nicht vestibulärer Schwindel mit organischer Ursache

Lagerungsschwindel

Canalith Repositioning Procedure (CRP)


Zervikaler Schwindel – ein Schwindel?

Die HWS als Plattform für Sinnesorgane

Zerviko-Okulärer Reflex



Neck-Torsion-Test

Posturale Instabilität

Williams 2017

Smooth Pursuit Neck-Torsion Test

Vertigo, funktionelle vertebro-basiläre Insuffizienz

Niewiadomski 2017

Stift mit den Augen folgen: "H – Muster"

Neutralstellung vs. 60° HWS-Rotation

Treten Symptome auf?

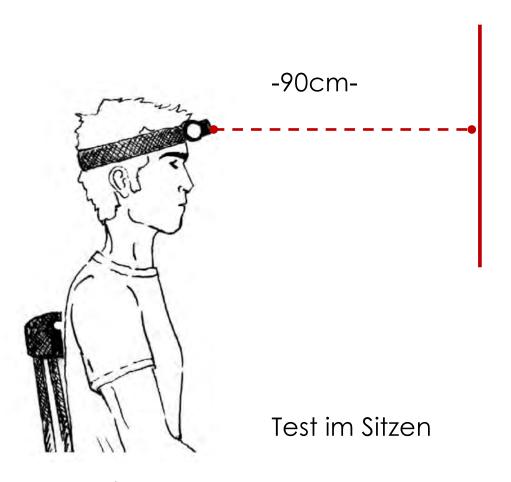
Nystagmus?

Bewegungstests Hypomobilität.

Obere HWS

Bewegungstests: Hypermobilität.

Beispiel: Sharp-Purser Lig. transversum


SP: 96%

Se: 88%

Cervical Joint Position Error Test

CJPE-Test

Rotation links Rotation rechts

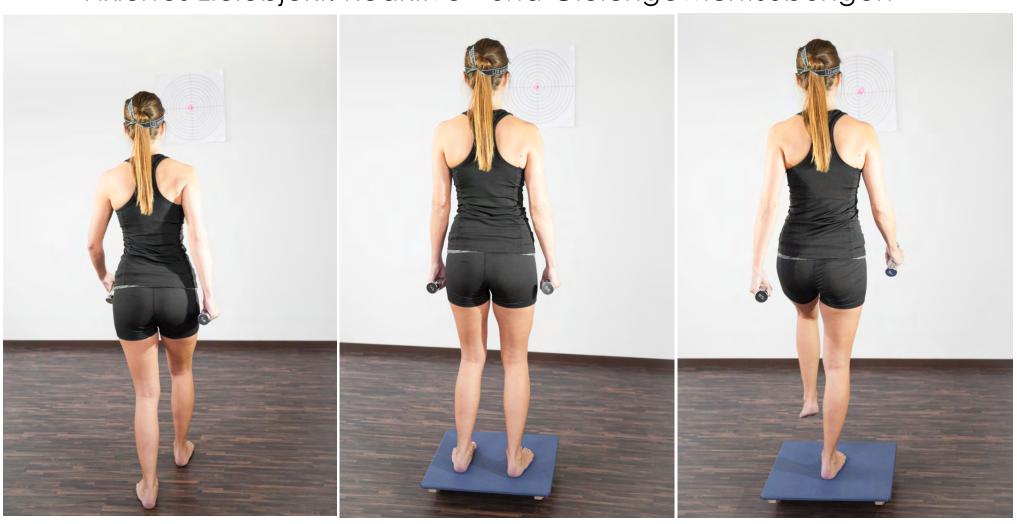
Extension und Flexion

jeweils 6x

Anzahl der Abweichung zur Mitte (>5cm)
Test-Re-Test nach 6 Wochen

de Vries 2015

Propriozeptives Training "Sensoneck"



Kopf-Repositionierung

Gleichgewichts- / Stabilometrietraining:

Fixiertes Zielobjekt: Reaktive - und Gleichgewichtsübungen

LaFond et al, 2008

Training Zerviko-Okulärer Kontrolle:

 Augenbewegung mit Kopf stabil

Okulomotorische Aktivitäten:

Ziel: Bessere Blickstabilität

- Eine den Augen folgende Kopfbewegung: Folgen
 - fokussiert (visuell und oder auditiv)
 - abgelenkt (visuell oder auditiv)
 - auch mit Sensonec möglich

Okulomotorische Aktivitäten:

Ziel: Bessere Blickstabilität

Kopfbewegungen mit visueller Fixierung des Zielobjekts

58

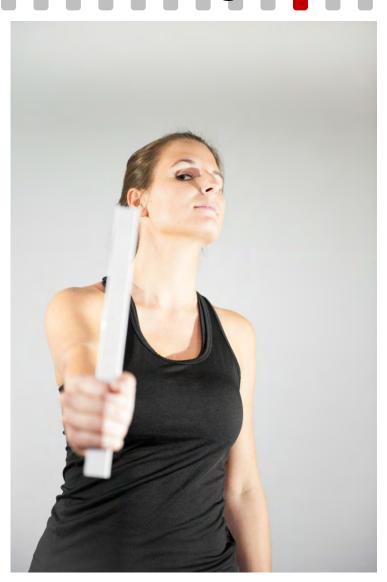
Physiopark REGENSBURG

Somatosensorisches Training

Okulomotorische Aktivitäten

Ziel: Bessere Blickstabilität

- Eine dem Kopf folgende Augenbewegung: Folgen
 - Fokussiert (visuell und oder auditiv)
 - Auch mit Sensoneck möglich



Okulomotorische Aktivitäten:

Steigerungen

- 1: Geschwindigkeit der Aufgabe
- 2: Bewegungsausmaß
- 3: Position des Patienten
- 4: Änderung der Blickrichtung
- 5: Änderung des Zielobjekts
- 6: Änderung des Hintergrunds

Übungen Sturzprophylaxe

- Verschiedene Ausgangsstellung
- Alltagsrelevanz
- Sicherheit (!)
- vom Einfachen zum Schwerem von stabil zu instabil von statisch zu dynamisch mit visueller Kontrolle, ohne visuelle Kontrolle (...)

Kniebeugen

Sicherheit: in einer Ecke üben

Niedrige Wiederholungszahlen: 5 x, 30 Sek. Pause, 5 Durchgänge (Sätze)

Kniebeugen

Mit Sitzerhöhung, ohne Arme

Ohne Sitzerhöhung und Arme

Ausfallschritt

Ausfallschritt (mit festhalten)

ohne festhalten

auf labiler Unterlage

Balance

Enger Stand Tandem-Stand Später ggf. mit geschlossenen Augen

Balance

Einbeinstand

ohne Arme

Augen geschlossen

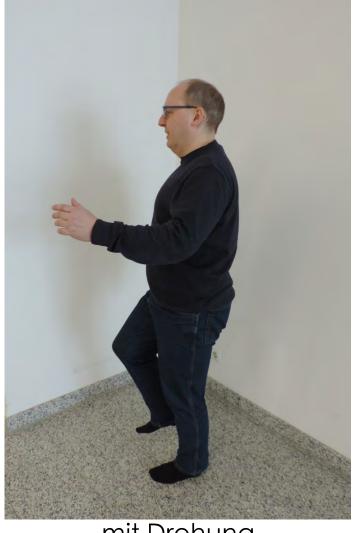
Balance

Einbeinstand

ohne Arme

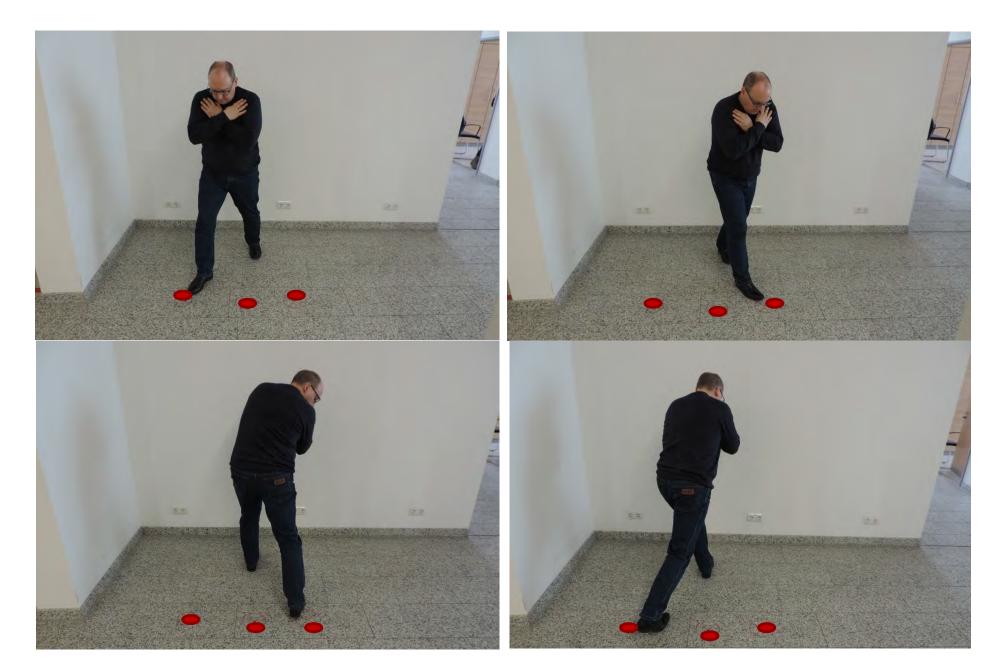
Augen geschlossen

"Schreiben in der Luft"


Tandemstand Einbeinstand

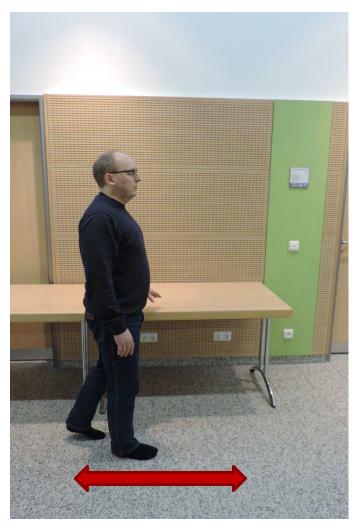
Augen geschlossen

"Auf der Stelle Gehen"

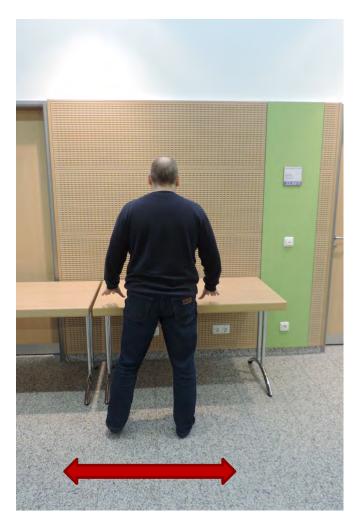


...mit Drehung

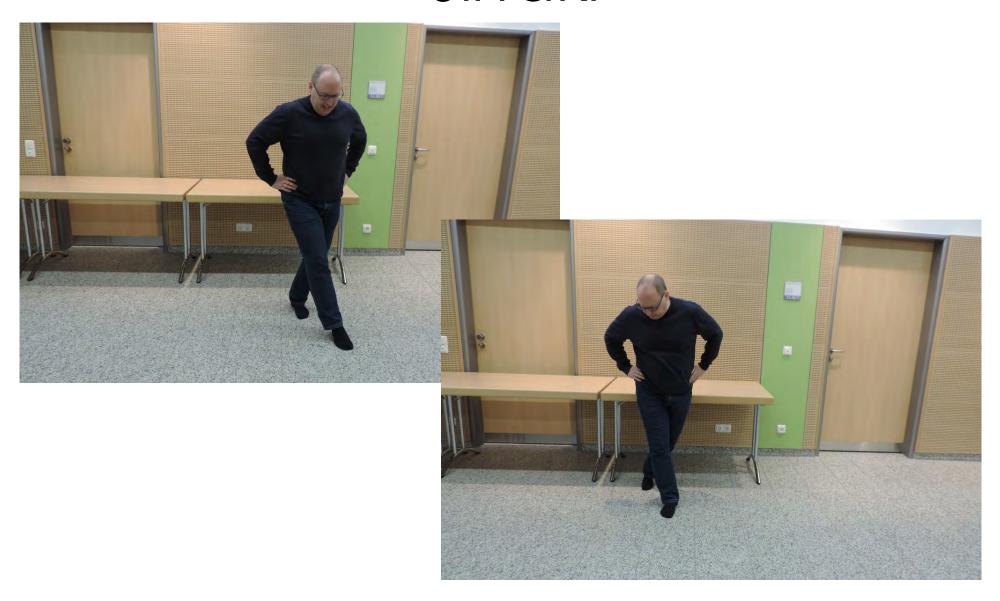
Später ggf. Augen geschlossen



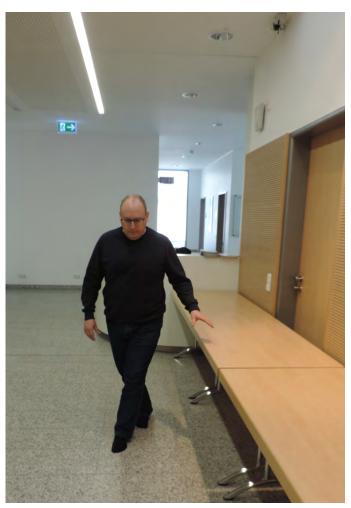
Ausfallschritte

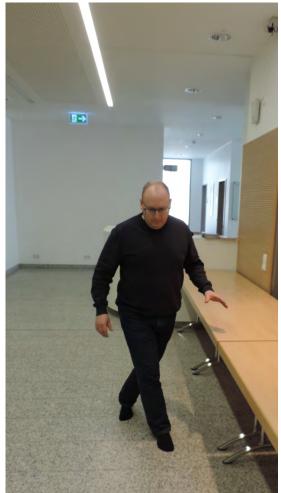


"Gangstabilität"

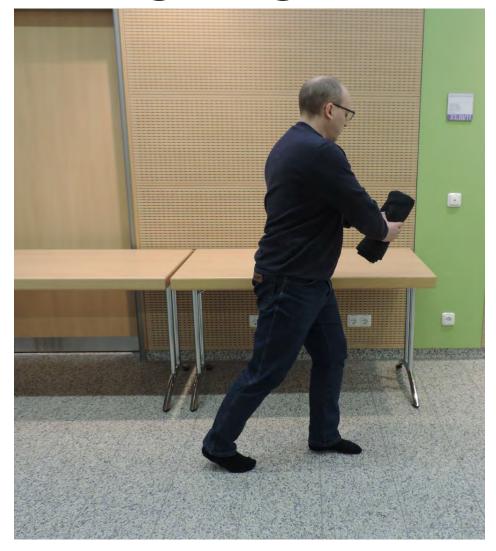

Vorwärts-Rückwärts gehen

Seitwärts




"Sirtaki"

"Kreuzgang"

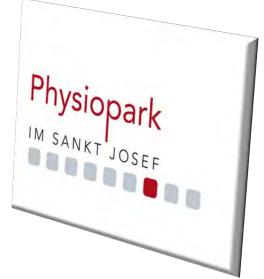


"Überkreuzgang"

"Aufstehen"

"Bridging"

"Drehen im Liegen"



Mehr über uns...

www.physiopark-regensburg.de

Download des Vortrages:

www.physiopark-regensburg.de

"Infothek"

Veronika Vest, Physiotherapeutin Leitung PT-Abteilung im Caritas St. Josef-Krankenhaus

Kontakt: v.vest@physiopark-regensburg.de

http: www.physiopark-regensburg.de

Roy Obermüller, Dipl. Sportwissenschaftler Leitender Trainingstherapeut / Rückenschmerztherapeut

Kontakt: roy.obermueller@physiopark-regensburg.de

http: www.physiopark-regensburg.de

International Academy of Orthopedic Medicine Wissenschaftlicher Leiter: ScD. Omer Matthijs www.iaom.de

SAMKE/T!

Alexandre et al.: Accuracy of Timed Up and Go Test for screening risk of falls among community-dwelling elderly, Brazilian Journal of Physical Therapy, 16(5)2012: 381-388.

Aranda-Gallardo et al.: Instruments for assessing the risk of falls in acute hospitalized patients: a systematic re-view and meta-analysis, Bio Med Central, 13 (2013):122.

Bell et al.: Systematic Review of the Balance Error Scoring System. Sports Health 2011 May; 3(3): 287–295. doi: 10.1177/1941738111403122

Billington et al.: Diagnostic accuracy of the STRA-TIFY clinical prediction rule for falls: A systematic review and metaanalysis, Bio Med Central, 13(2012):76.

Chen et al.: A three-dimensional study of the atlantodental interval in a normal Chinese population using reformatted computed tomography. Surg Radiol Anat. 2011 Nov;33(9):801-6

Coker et al.: Evaluation of the STRATIFY falls prediction tool on a geriatric unit. Outcomes Manag 2003 Jan-Mar;7(1):8-14; quiz 15-6.

Conley et al.: The challenge of predicting patients at risk for falling: development of the Conley Scale. Medsurg Nurs 1999 Dec;8(6):348-54.

DeVries: Joint position sense error in people with neck pain: A systematic review. Man Ther 2015 Dec;20(6):736-44. doi: 10.1016/j.math.2015.04.015. Epub 2015 May 2.

<u>Duncan et al.:</u> Functional reach: a new clinical measure of balance. J Gerontol 1990 Nov;45(6):M192-7.

Eagle et al.: Comparison of three instruments in predicting accidental falls in selected inpatients in a general teaching hospital. Journal of Gerontological Nursing, 25, 1999 (7), 40-45.

Epley: The canalith repositioning procedure: for treatment of benign paroxysmal positional vertigo. Otolaryngol Head and Neck Surgery. 107(3), 1992, S. 399–404.

Fichtinger 2017: Sturzrisikoassessments und deren Anwendbarkeit in der Praxis . Bachelorarbeit Medizinische Universität Graz Institut für Pflegewissenschaft

Hendrich et al.: Hospital Falls: Development of a Predictive Model for Clinical Practice. Applied Nursing Research. Band 8, Nr. 3, August 1995, S. 129–139

Hendrich et al.: Validation of the Hendrich II Fall Risk Model: A large concurrent case/control study of hospitalized patients. Applied Nursing Research, 16(1) 2003, 9-21

Hendrich: Fall Risk Assessment for Older Adults: The Hendrich II Fall Risk Model. Try this. Hartford Institute for Geriatric Nursing, New York University, College of Nursing, Number 8, Revised 2016

Iverson et al.: Normative data for the balance error scoring system: implications for brain injury evaluations. <u>Brain Inj.</u> 2008 Feb;22(2):147-52. doi: 10.1080/02699050701867407.

Iverson et al.: Normative Data for the Balance Error Scoring System in Adults. Rehab Res Pract Vol 2013, Article ID 846418, 5 pages; http://dx.doi.org/10.1155/2013/846418

Jull et al.: Retraining cervical joint position sense: the effect of two exercise regimes. J Orthop Res 2007 Mar;25(3):404-12.

Kim et al.: Evaluation of three fall-risk assessment tools in an acute care setting, Journal of Ad-vanced Nursing, 60(4) 2007:427–435.

Kloos et al.: Interrater and Intrarater Reliability of the Tinetti Balance Test for Individuals with Amyotrophic Lateral Sclerosis. J Neurol Phys Ther March 2004 Vol 28 (1), 12-19; doi: 10.1097/01.NPT.0000284773.87060.c8

Köpke et al.: The Tinetti test: Babylon in geriatric assessment. Z Gerontol Geriatr 2006 Aug;39(4):288-91.

Lovallo et al.: Accidental falls in hospital inpatients: evaluation of sensitivity and specificity of two risk as-sessment tools, Journal of Advanced Nursing, 66(3)2010:690–696.

McCollam: Evaluation and implementation of a research-based falls assessment innovation. The Nursing Clinics of North America [01 Sep 1995, 30(3):507-514]

Milisen et al.:Fall prediction in in patients by bedside nurses using the St. Thomas's Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY) instrument: a multicenter study. J Am Geriatr Soc. 2007 May;55(5):725-33.

Milisen et al.: Fall prediction according to nurses' clinical judgment: differences between medical, surgical, and geriatric wards. J Am Geriatr Soc, 2012 Jun;60(6):1115-21. doi: 10.1111/j.1532-5415.2012.03957.x. Epub 2012 May 29.

Morse et al.: A prospective study to identify the fall-prone patient. Soc Sci Med. 1989;28(1):81-86

Myers et al.: Fall risk assessment: a prospective investigation of nurses' clinical judgement and risk assessment tools in predicting patient falls. Int J Nurs Pract 2003 Jun;9(3):158-65.

Niewiadomski et al.: Diagnostic evaluation of neck torsion test in objective examination in patients with vertigo and/or hearing-impairment. Otolaryngologia Polska = The Polish Otolaryngology [01 Jun 2017, 71 (3):20-26]

Nyberg et al.: Using the Downton index to predict those prone to falls in stroke rehabilitation. Stroke 1996 Oct;27(10):1821-4.

Oliver et al.: Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: Case-control and cohort studies. BMJ Clinical Research 315(7115):1049-53. October 1997

Papaioannou et al.: Prediction of falls using a risk assessment tool in the acute care setting. BMC Med 2004 Jan 21;2:1.

Park et al.: Validity and Reliability Study of the Korean Tinetti Mobility Test for Parkinson's Disease. J Mov Disord 2018 Jan;11(1):24-29. doi: 10.14802/jmd.17058. Epub 2018 Jan 23.

Quatman-Yates et al.: The utility of the balance error scoring system for mild brain injury assessments in children and adolescents. Phys Sportsmed 2014 Sep;42(3):32-8. doi: 10.3810/psm.2014.09.2073.

Rosa et al.: Usefulness, assessment and normative data of the Functional Reach Test in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2018 Dec 7;81:149-170. doi: 10.1016/j.archger.2018.11.015. [Epub ahead of print]

Robinovitch et al.: Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. <u>Lancet</u>. 2013 Jan 5;381(9860):47-54. doi: 10.1016/S0140-6736(12)61263-X. Epub 2012 Oct 17.

Schwendimann et al.: Falls and consequent injuries in hospitalized patients: effects of an interdisciplinary falls prevention program. BMC Health Serv Res. 2006; 6: 69. Published online 2006 Jun 7. doi: 10.1186/1472-6963-6-69

Semont et al.: Curing the BPPV with a liberatory maneuver. Adv Otorhinolaryngol 1988;42:290–293.

Springer et al.: Normative Values for the Unipedal Stance test with Eyes Open and Closed. J Geriatr Phys Ther 2007;30(1):8-15

Thrane et al.: The associacion be-tween timed up and go test and history of falls: The Tromsø study, Bio Med Central, 7 (2007):1.

Uitvlugt et al.: Clinical assessment of atlantoaxial instability using the Sharp-Purser test. Arthritis Rheum. 1988 Jul;31(7):918-22

Vassallo, et al.: A Comparative Study of the Use of Four Fall Risk Assessment Tools on Acute Medical Wards, JAGS, 53(2005):1034–1038.

Weiner et al.: Functional reach: a marker of physical frailty. J Am Geriatr Soc 1992; 40: 203–207

Wildbacher 2014, Sturzprävention für ältere Menschen, Literaturübersicht, Hauptverband der Sozialversicherungsträger, viewed 13 April 2017, http://www.hauptverband.at/cdscontent/load?contentid=10008.615719&version=1425627108.

Williams et al.: Use of neck torsion as a specific test of neck related postural instability Author links open overlay panel. Musculoskeletal Science and Practice https://doi.org/10.1016/j.msksp.2017.03.012

Spezieller Dank an: International Academy of Orthopedic Medicine Dr. Omer Matthijs

Link Tinetti
https://www.youtube.com/watch?v=oacilnRoBQE